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ABSTRACT 

Linear prediction is presented as a spectral modeling tech- 

nique in which the signal spectrum is modeled by an all-pole 

spectrum.  The method allows for arbitrary spectral shaping in 

the frequency domain, and for modeling of continuous as well as 

discrete spectra (such as filter bank spectra).  Zn addition, 

using the method of sel^tive J^gar prediction, .xl-pole modeling 

is applied to selected portions of the spectrum, with applications 

to speech recognition and speech compression.  Linear prediction 

is compared with traditional analysis-by-synthesis techniques 

for spectral modeling.  It is found that linear prediction offers 

computational advantages over analysis-by-synthesis, as well as 

better modeling properties if the variations of the signal spec- 

trum from the desired spectral model are large.  For relatively 

smooth spectra and for filter bank spectra, analysis-by-synthesis 

is judged to give better results.  Finally, a suboptimal solution 

to the problem of all-zero modeling using linear prediction is 

given. 
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I.  INTRODUCTION 

The short-time spectrum has been perhaps the single mos- 

important method of analysis for the study of speech.  Its 

applications in speech synthesis, speech recognition and spea- 

ker identification are pervasive and well known.  The extensive 

use of the short-time spectrum as an analysis tool began with 

the development of the sound spectrograph [1].  Even today, this 

three-dimensional time-frequency-intensity spectral representa- 

tion is of great utility.  However, there are obvious limita- 

tions on the range and flexibility of the types of analysis 

that can be performed, as well as limitations in the resolution 

and dynamic range of the output spectrogram display. 

Many of ehe limitations of the spectrograph were overcome 

upon the introduction, in the 1950's, of high-speed digital 

computers in spectral analysis.  Simultaneous with the advance 

in computation there were significant advances that occurred 

in understanding the acoustics of speech production.  This was 

highlighted in 1960 by the publication of Fant's Acoustic 

Theory of Speech Production [2].  As a result of the two types 

of advances mentioned above, the method of spectral analysis-by- 

synthesis (AbS) for the reduction of speech spectra was intro- 

duced at M.I.T. and Bell Laboratories in 1961.  At M.I.T. the 

method was used on filter-bank derived spectra to extract the 
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pole pattern of vowels [3,4] and pole-zero patterns of nasals 

[5]. At Bell Laboratories, analysis-by-synthesis was used on 

the computed spectrum of a single pitch period to extract the 

formants (resonances, poles) of the vocal tract as well as the 

zeros of the glottal spectrum [6]. 

In spectral AbS, a speech spectrum is fitted by another 

spectrum that is represented in terms of poles and zeros.  The 

fit is optimized through the minimization of some error criterion. 

The eiror between the two log spectra is minimized in an 

iterative manner.  The early attempts minimized the error by 

recursively varying only one pole or zero at a time. These me- 

thods were error prone and were not easily adaptable to an au- 

tomatic algorithm.  More recently, Olive [7] developed a Newton- 

Raphson technigue that performs the iterative computation on all 

poles simultaneously and in a straightforward automatic manner. 

In this paper we present another method of spectral modeling 

which makes use of recent advances in the field of digital signal 

processing, in particular the introduction of linear prediction 

(LP) to speech analysis.  The major difference between AbS and 

LP analysis is the error criterion used in the matching process, 

which in the latter is the integrated ratio of the two spectra. 

In general, this error criterion leads to a better spectral 

envelope fit.  In addition, for the special (but important) case 
y 
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of an all-pole model spectrum, LP analysis offers two important 

advantages:  (a) The computations for the spectral parameters 

are straightforward and noniterative, and (b) if the time signal 

is available there is no need to compute the spectrum first. 

The two methods have two properties in common:  (a) The spectral 

matching can be done selectively to any portion of the spectrum, 

and (b) both error criteria are functions of the ratio of the 

original and model spectra, thereby resulting in a matching 

process that is uniform over the frequency range of interest. 

In Section II we apply LP analysis to spectral matching 

by all-pole model spectra.  Section III describes the properties 

of the optimum model spectrum.  In Section IV we introduce the 

method of selective linear prediction, where LP analysis is 

applied to a selected portion of the spectrum, and we describe 

its applications to speech recognition and speech compression. 

Section V describes the application of LP analysis to the modeling 

of discrete spectra (such as harmonic spectra and those obtained 

from a bank of filters).  Section VI examines the properties of 

the error measure used in LP analysis and gives a critical com- 

parison between LP analysis and analysis-by-synthesis.  Section VII 

gives a suboptimal solution to the problem of all-zero modeling 

using LP analysis. 
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II.  LI .'EAR PREDICTIVE SPECTRAL MODELING 

! 
Let us assume that we are given a power spectrum PCw) with 

bandwidth B, i.e. P(iü) is known for 05a)<a) =2ITB. (The more general 
b 

case where the frequency range covers only a portion of a spectrum 

is treated later.)  In this method, we shall view PU) as the 

spectrum of some signal s(nT) that was sharply low-pass filtered 

at B Hz and sampled at a frequency f =2B=-=—, where T is the 
S       X 

sampling period. We shall view P((D) as such irrespective of how 

it was actually generated.  This now allows us to deal with P((D) 

as the spectrum of a sampled signal and, hence, we can make use 

of digital signal processing techniques.  In particular, instead 

of using the complex s plane we now use the complex z plane.  In 

essence, we map P((D) onto the upper half of the unit circle in 

the z plane such that the angular distance 9=(JüT.  The mapping is 

such that ti)=0 corresponds to 6=0 and u-u.   corresponds to 6=Tr. 

In addition P (-u))=P (u) defines the spectruir over the bottom half 

of the unit circle, i.e. the spectrum is even and real.  (For 

convenience, we shall set the sampling interval T=l. For other 

values of T simply replace to by wT in the appropriate equations.) 

Thus, we shall assume that 

P(u) = |S(eju)|2  , (1) 

where S(z) is the z transform of the hypothetical signal s . I 

a 
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We wish to fit P(a)) in some optimal manner by an all-pole 

spectrum Pfu).  Let us assume that the model spectrum corresponds 

to a transfer function S(z) given by 

S(2) = G 
ÄTzT 

1 + 
P 
I 

k-1 
ak z 

-k 
(2) 

where A(z) = 1 + 
P 
Z 

k=l 
ak 2 

-k 
(3) 

. 

f 1 

I 

will be called the inverse filter, p is the number of poles 

in the model spectrum, and G is a constant gain factor.  The model 

spectrum P (u>)   is then given by 

f(«) = Is(ejw)|2 =  Sf _ 
|A(e^)|2 

1 + I ave-3
kw 

(4) 

Given a spectrum PCw) and a number of poles p. we must determine 

the parameters {ak, Isk^p} and G. 

We define an error measure E between P(a)) and P(u)): 

/ 
P(U)) 
A du 

-TT P(a)) 

TT 

/ P(u) A(e 
-IT 

(5) 

(6) 
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E can be interpreted as the total energy of the "error signal- 

obtained by passing the hypothetical signal sn through the in- 

verse filter A(z).  (This is clear by using Parseval's theorem.) 

Note from (6) that E is defined to be independent of G.  The 

gain factor is determined from energy considerations. 

The parameters {ak} are determined by minimizing E in (6) 

with respect to each of the parameters.  This is accomplished by 

setting 

I 
I 
: 

— 

9E 
3a, ■ 0, l5i<p . (7) 

From (4-6) it can be shown that [8] 

where 

9E   of     p 1 jr~  = 2 R. + i    a, R, . , , 9ai   I i  k=l k  I^IJ ' 

Rfc ~ Jv     ^ ptw) cos(kuj) du 
-IT 

(8) 

(9) 

is the autocorrelation function corresponding to the signal spec- 

trum P(w).  From (7) and (8) we must have 

.: 

p 
z 

k=l k  i-k = -R. i'   lsi<p (10) 

This is a set of p linear equations in p unknowns which can be 

solved for the parameters {ak} of the all-pole model spe-trum. 
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A recursive solution is given elsewhere [8,15,16]. 

The minimum error is obtained by substituting (9) and (10) 

in (6). The result can be shown to be 

P 
Z 

k=l 
E„ = R. + Z ak Rk , III) 

where the dependence of the minimum error on p is shown explicitly, 

2 
The gain factor G in (4) is obtained by conserving energy 

between the original and model spectra, i.e. 

1  ' 1  ^ 
Jy / P(u)) dw = jjj- / P(tü) dw 

-IT -TT 

Li 

I. 
I. 
I. 
I 
1. 
I 
i: 

or 

where 

Ro = Ro ' 

Rj^ = 1  / P(ü)) cos(iaj) dw 

(12) 

(13) 

is the autocorrelation function corresponding to the model spec- 

trum.  An analytic expression for R. is more easily obtained 

from the unit sample response s of S(z) in (2).  Takiny the in- 

verse z transform of (2) we have 

0 , n<0, 

G , n=0. 

"^ ak sn-k ' n>0- 

(14) 

^^^^■-'--^ 
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^ definiti°"- ">e ..tocor^Utio, function k   i. ■ on Ri *• given by 
■ 

1  „L Sn Sn+|l| . 
(15) 

From (14) and (is) it 
can be shown that 

R„ = G2 - a, R 
k-2 k "k 

and R =  y 
1 ' k=l ^ R|i-k| ' Mils- . 

(16) 

(17) 

From (10), (12), (l6) ._ ..,. 
U ; and (17), We conclude that 

«i = R. , 0<i<p , 

and r2  ö    
p G = R„ + I ak Rk • k=l 

Therefore, from (11) and (19), G
2 i 

s equal to the mi 

(13) 

(19) 

nimum error 

Equations (10) and M en „ 

t- P(U)  Given . 
mPletel1' ^^^ the ^ ^c- 

P. the p.r«.t.r. of ?,u) are obtaiiled 
P°les 

«^„.utlon ooefficie„ts R  0 .   ' '"" CO,npUtlnt' the 

cients ,. , '' P' USin,' ,9)- Th« ««-«i- 
- .V a« then computed from (10) and ^ ^ G ^ (i9)_ 

E-i—"- " «.. speaon signal itself ,. 
not necessary to compute p(u) f ". " i. 

instead, the autocorrelation 

8 
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coefficients Ri can be computed from the signal directly: 

■ 

Ri ' n-- Sn ^Ul '  05i-p  ' 
(20) 

. 

I I 

ID 
U 
D 
D 
D 

It is clear that (2J) can be evaluated only if the signal is of 

finite duration.  This usually brings up the issue of windowing. 

(See Makhoux and Wolf [8] for a discussion of windowing of speech 

signals.) 

The spectral fitting method described in this section can 

oe shown to be equivalent to the autocorrelation method of 

linear prediction [8,9], where the coefficients a, are the pre- 

dictor coefficients. That is why we have chosen to call this 

method the linear predictive (LP) spectral modeling method.  The 

model spectrum P(a)) is also known as the LP spectrum. 

Figure 1 shows an example of LP spectral matching for a 

spectrum over 0-10 kHz with the number of poles p=28.  In this 

case the original spectrum P(a)) was obtained by computing the 

fast Fourier transform (FFT) of a 20 ms, Hamming windowed, 20 

kHz sampled speech signal.  The spectrum P(a)) was computed 

from (4) by dividing G by the magnitude squared of the FFT of 

the sequence;  1, «j, a2, ..., a .  Arbitrary frequency resola- 

tion can be obtained by simply appending an appropriate number of 

zeros to this sequence before taking the F~T. 

—: --!■ 



m^^^^^^wm^^ 

BBN Report No. 2578 Bolt Beranek and Newman Inc, 

., 

-; 

tflP)   A9d3N3  3AllV13ä 

10 

r-i 

Cr 
■H 
U) 

XS 
0 

3 

I 
O 
I 

EH 

E 
c 
it 

o 
■p 

■p 
•H 
IM 

(0 
M 

■P 
U 

a 
w 

o 
a 
1 

00 

0> 
•H 

u 

1:1 

1.J 

G 

P 
•M-t^A 



■5 

BBN  Report  No.   2578 Bolt  Beranek an^  N'ewman   Inc. 

•• 

Before we turn to the general case of selective spectral 

matching, we shall examine the properties of the model spectrum 

P(w). 

:: 
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III.  PROPERTIES OF THE MODEL SPECTRUM 

The poles of the model spectrum can be found by computing 

the roots of the polynomial A(z) in (3).  Since the coefficients 

ak are rea1' some or none of the roots are real and the rest are 

complex conjugate pairs.  Conversion of the poles to the s plane 

can be achieved by setting each root zk=e
skT , where s.-o.+jaj. is 

the corresponding pole in the s plane.  If the root z,=z. +iz . 
k kr J ki, 

then: 

1   „       *ki wk = f arctan TT kr 
(21a) 

(21b) 

where z^r  and z^  are the real and imaginary parts of z, , re- 

spectively, and T is the sampling period. 

One important property of the poles of S(z) is that they are 

guaranteed to be inside the unit circle, provided P(tü) is a posi- 

tive defining spectrum [10]. 

For a well chosen number of poles p, some of the poles of 

S(z) can be related to vocal tract resonances.  The extent to 

which the formant values thus obtained reflect the actual reso- 

nances of the vocal tract depends on several factors, including 

tne adequacy of the all-pole model for each spectrum considered, 

and the number of poles in the model.  These issues are 

12 
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discussed in more detail elsewhere 18]. 

The manner in which the model spectrum P(a)) approximates 

P(ü)) is reflected largely in (18), which relates the autocorrela- 

tion coefficients ^ and 1^. Since P{u) and PU) are the Fourier 

transforms of ^ and 1^, respectively, it follows that increasing 

the value of p increases the range over which R. and R. are equal, 

resulting in a better fit of P(u) to Pdo).  m the limit, as 

p—, Ri becomes identical to Ri for all i, and hence the two 

power spectra become identical: 

P(a)) = P(OJ) , as p-»— 

Since the minimum error E = G , we have from (5) 

1 f  P(ü)) .   ., 

-TT P(tj) 

(22) 

(23) 

Equation (23) is true for all values of p.  In particular, it is 

true as p— , in which case from (22) we see that (23) becomes 

an identity.  Another important case where (2 3) becomes an iden- 

tity is when P(tü) is an all-pole spectrum with p poles, then 

P((ü) will be identical to P(a)) for all p?p .  Relation (23) will 

be useful in discussing the properties of the error measure in 

Section vi. 
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Another property of P(u,) that will be discussed later on 

is that the slope of PU) is zero at u-0 and win 

3P(a)) 
"35— = 0 ' wss0'7r 

This can be easily seen by rewriting (4) as 

„2 

(24) 

P(w) = 

b +2 Z b.cosCko)) 
k=l K 

(25) 

where 
p-|k| 

bk = n=n  an an+|kl  ' ao = ^  O^Sp , n=ü (26) 

are the autocorrelation coefficients of the impul 

the inverse filter AU).  By taking 

that it is equal to zero at 0 and t. 

the inverse filter A(z).  By taking iLM in (25), it is cl 

se response of 

ear 

Equation (25) gives another method for computing ?(«), and 

that is by dividinq G2 by the real part of the FFT of the 

b0, 2b1, 2b2,..., 2b . 

sequence: 
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IV.  SELECTIVE LINEAR PREDICTION 

We now generalize the LP spectral modeling method to the 

case where we wish to fit a selected portion of a given spec- 

trum. 

in general, we have a spectrum PC.), u,^ , and we wish 

to match the spectrum in a region (fi,  .^y by an all.pole 

spectrum P(w) as given by (4).  Call the spectrum in the region 

2, P' U).  In order to compute the parameters of ?{«) we simply 

map the region 2 onto the unit circle such that. w^0 (the arrow 

is read "mapped into") and u,^, and then follow the same proce- 

dure outlined in Section II.  The mapping is done as follows: 

Define 

and 

Then 

and 

U) '  = U) - ÜJ 
a 

Wfc. = w - to o pa 

8 -  Ostu's to' 
(27) 

T' = 
w, 

. 

[J 

a 
u 

where T' is a new hypo ehetical sampling interval.  The problem 

now reduces to the original one.  The autocorrelation coeffi- 

cients Rk , 0<ksp, are computed from (9) with P' (w') replacing 

P(«).  Then (10) and (19) are used to solve for the parameters 

of the model spectrum Pdo'). 

15 
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Figure 2 shows an example of selective linear prediction. 

The signal spectrum is identical to that shown in Figure 1.  In 

Fiquie 2 the two halves of the spectrum were matched separately 

by a 14-pole model spectrum in each half,  m the left half ui =0 
a 

and Uß=5 kHz, and in the right half u =5 kHz and w.-lO kHz. 
a p 

Since the mtchinq for each half was done independently, there 

is no guarantee that the two model spectra will join smoothly 

at 5 kHz.  in fact, in general, a discontinuity such as the one 

in Figure 2 is expected.  Pecall that the model spectrum has 

zero slope at 0 and TT .  This is evident in Figure 2 at 5 kHz. 

The reader wii: also note other differences between Figs. 1 and 2 

in the manner i4 which the original and model spectra match. 

Figure 3 shows the same signal spectrum as in Figure 2, 

but with the right half of the spectrum being fitted by only =i 

5-pole spectrum.  This demonstrates the flexibility of selective 

linear prediction in that different portions of a spectrum can be 

matched using different numbers of poles. 

Applications to Speech Recognition end Compression 

Here we shall demonstrate the idea of selective linear pre- 

diction as applied to speech recognition and speech compression. 

It is important to note that, since we assume the availability of 

the signal spectrum P(w)f any desired frequency i.haping or 
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filtering can be done directly to the signal spectrum before 

LP analysis is performed.  This will be clear below. 

Figures 1-3 show the same signal spectrum computed from a 

20 kHz sampled signal.  Now, in order to model the spectral en- 

velope for the whole frequency range from 0-10 kHz, one would 

probably use anywhere between 24-28 poles for the all-pole model 

spectrum.  A 28-pole fit is shown in Fig. 1.  For speech recogni- 

tion applications, however, the main region of interest is the 

0-5 kHz region.  The spectrum in the 5-10 kHz region is of inter- 

est mainly for the recoanition of fricatives, in which case the 

total energy in that region might be sufficient.  We also know 

that in LP analysis the spectral matching process performs uni- 

formly over the whole frequency range, which might not be de- 

sirable in this case because the all-pole assumption for many 

speech sounds is less applicable for frequencies greater than 

5 kHz.  Therefore, instead of modeling the whole spectrum, we 

use selective LP to model the lower 5 kHz by a lower order all- 

pole spectrum.  A 14-pole fit is shown in Figs. 2 and 3.  In this 

manner, net only do we reduce our computations for the poles, but 

we are also in the advantageous position of having to interpret 

14 instead of 28 poles.  The total energy in the 5-10 kHz region 

can be easily computed directly from the spectrum and used for 

the detection of fricatives if desired.  Alternativen  one could 
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fit d very low order all-pole spectrum to that region, as shown 

in I'iq, 3. 

Now, the same type of analysis could have been done in the 

time domain, but consider what one would have had to do.  First, 

the 20 kHz sampled signal must be sharply filtered at 5 kHz. 

Second, and very importantly, the signal must be down-sampled to 

10 kHz by discarding every other sample.  Third, a 14-pole LP 

analysis is performed on the resulting signal.  And fourth, in 

order to obtain the energy in the 5-10 kHz region, one subtracts 

the «ncrgy in the 10 kHz signal from the energy in the original 

20 kHz signal.  (It is even more complicated if one wants to per- 

form an LP analysis on the 5-10 kHz region in the time domain.) 

Not only is the time domain analysis more involved and costly; 

it is also very inflexible.  Consider the problem of having to 

carry the same procedure to match the spectrum in the 0-3.5 kHz 

region instead of 0-5 kHz.  In that case, it would be necessary 

to perform the time-domain down-sampling from 20 kHz to 7 kHz: 

a rather difficult task.  The elegance of the method of selective 

linear prediction lies in the fact that the two problems of sharp 

filtering and down sampling are completely solved by working in 

the frequency domain. 
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• • 

We are currently applying this property to speech com- 

pression systems that employ linear prediction.  In this appli- 

cation, it is desirable to be able to test the performance of the 

system at different sampling rates.  We sample the signal at the 

highest sampling rate desired, and then we simulate the perfor- 

mance of different sampling rates by applying selective linear 

prediction to the corresponding frequency bands. 

>     ■• 
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• ■ 

Thus far we have assumed that the spectrum P(w) is a con- 

tinuous function of frequency.  Most often, however, the spectrum 

is icnown at only a finite number of frequencies.  For example, 

an FFT-derived spectrum has values at equally spaced frequency 

points.  On the other hand, filter bank spectra usually have 

values at frequencies that are not necessarily equally spaced. 

For these discrete cases we define the error measure E as a sum- 

mation instead of an integral: 

c2  N-l PCCL; ) 

N   ^ ^ 
n=0 P(a)n) 

(28) 

where N is the total number of spectral points on the unit circle 

Following the same minimization procedure as in the continuous 

case, we obtain the set of equations (10) again, but the coeffi- 

cients R^ are now defined as 

1  N-l 
Rk ^ N   l     P(ajn) c^s^w) . 

n= 0 
(29) 

UJ n 
Note that in (28), only values of P(w) at the frequencies 

contribute to the total error.  Therefore, after P(w) is obtained, 

the error between P(w) and P(«) is minimum at the frequencies 

wn , 0<n<N-l.  At other frequencies, P{u>) cannot be guaranteed 
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, 

in any way except in that it is a smooth function of frequency 

as given by (4) . 

If the spectrum is known at equally spaced frequency points, 

then if desired, (29) can be computed via a fast Fourier trans-' 

form (FFT) of the spectrum P(V.  (In that case , hiqhly ^ 

posite value of N would help.,  However, if the spectrum P(u ) is 

known at frequencies that are not equally spacea, then one can 

define a new spectrum Q(%, at equally spaced frequencies such 

that Q(V = p(v at every %   t   and is ^^ otherwise>  0ne can 

then use an FFT on Q^, to compute Rk. We do not necessarily 

recommend the use of the method just outlined for cases where 

the frequency spacing is nonuniform, because very often it is 

simply faster to compute (29, directly.  However, we wished to 

make the point that adding spectral values that are zero does 

not affect the error minimization process in any way, since 

those values do not contribute to the total error, as is clear 

from (28,. 

D 

a 
a 
a 
a 

Computational Considerat- ions 

The solution for the predictor coefficients ak in (10, is un- 

affected if each of the autocorrelation coefficients is multi- 

plied or divided by a constant.  Therefore, the division by N 

in (29, is unnecessary to obtain the desired solution of (10,. 
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The only possible importance of the division by N (or some other 

number) is to get a good estimate of the total energy R .  what 

number to divide with depends on how the signal spectrum was 

obtained and on the particular application. 

The spectrum PfuJ is an even function of frequency, i.e. 

p^N-n) = P(u)n).  Usually what we have is a spectrum that we map 

onto the unit circle, as explained in Section IV.  The evenness 

property is then applied in order to complete the definition of 

the spectrum around the unit circle.  The mapping in the conti- 

nuous frequency case is no problem.  However, there are a few 

matters to worry about in the discrete case.  The main problem 

is the relation of the frequencies u^  and u in (27) to the 

discrete frequencies V  There is a total of four possible cases 

which are divided in two categories: 

(a) N even 

(1) w0 - 0 , a)N/2 - TT . 

(2) None of the frequencies un correspond to either 0 or 

(b) N odd 

(1) a)o  - 0   . 

(2) %^i  - TT   . 

24 

u 
u 
u 
u 
[J 

u 
D 
D 
a 
a 
a 
D 
a 
D 

Lfei£j .;..w-. ■^^       *'   .- -• i , 



 —_  —- 

BBN Report No. 2578 Bolt Beranek and Newman Inc. 

The four cases are illustrated in Fig. 4, where the crosses on 

the unit circle correspond to the frequencies u . Case (al) is 

the one usually encountered in FFT-derived spectra with even N. 

Case (a2) is usually encountered with filter bank spectra.  Note 

that, because of the evenness property of P(w ), (29) can be 

simplified, but in a slightly different manner for each of the 

four cases. 

Application to Filter Bank Spectra 

We simulated the output of a filter bank by simply adding 

the energy in specified frequency bands from an FFT-derived 

spectrum.  The resulting simulated filter bank has center fre- 

quencies and bandwidths similar to the hardware filter bank at 

the Speech Communication Laboratory at M.I.T.  The filters are 

linearly spaced up to 1.6 kHz and logarithmically spaced there- 

after.  Figures 5 and 6 -.how two examples of the application of 

LP spectral modeling to the outputs of the simulated filter bank. 

In each figure, the original spectrum and the corresponding simu- 

lated filter bank spectrum are shown along with a 14-pole LP 

spectrum in each case.  (The spectral lines in the filter bank 

spectra are shown with a finite width only because of the manner 

in which they were plotted.)  The filter bank LP spectra in 

Figs. 5b and 6b are quite similar to those in Figs. 5a and 6a, 
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, .. 

(a) N EVEN 

(b) N ODD 

Fig. 4. Four possible configurations for discrete spectra.  Each 
cross represents one of the N spectral lines in the 
spectrum. 
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2       3       4 
FREQUENCY (KHZ) 

. . 

i. 

1 

I 

I. 
I 

(B) 

1       2       3       4       S 
FREQUENCY (KHZ) 

Fig. 5. Application of LP modeling to a filter bank vowel spectrum. 
(A) A 14-pole fit to the original spectrum. 
(B) A 14-pole fit to the simulated filter bank spectrum. 
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2 3 4 

FREQUENCY (KHZ) 

. 

1 2 3 ^ g 

FREQUENCY ( KHZ) 

Fig. 6. Application of LP modeling to a filter bank fricative 
R? ^ (?) i.14-Pole fit to the original spectrum. 
(B)   A 14-pole  fit to the  simulated  filter bank  s  ^ct^um. 

.   . 
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□ 

in spite of the relatively few spectral points in the filter 

bank spectra, especially at high frequencies.  The extra peak at 

low frequencies in Fig. 6b is due to the lack of spectral points 

at frequencies less than 150 Hz. 

Spectra of Periodic Signals 

We have seen in Section III that if the signal spectrum P(u.) 

consists of po poles only, then for p=Po the LP spectrum P(u) is 

identical to P(W).  The situat on is not so favorable for discrete 

signal spectra, as we shall see below. 

Let us assume that we are given a discrete spectrum P, (tu) 

that: has values at equally spaced frequencies with a spacing of 

wo , such that 

>,ui -T» (w)   ,     w=ntüo   ,   n integer   , 

U     ,     otherwise. 
(30) 

where Po(w) is a p0-pole spectrum.  p^«) can be regarded as the 

spectrum of a periodic signal that .s generated by applying a 

periodic unit sample sequence with period T- 2S- to an all-pole 

filter whose magnitude squared frequency response is given by 

P0(uO.  The question is, if P^«) is our signal spectrum, what 

will be the corresponding LP model spectrum for p=po?  For LP 

modeling in the discrete case we compute the parameters a. from 

29 
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(10), where the autocorrelation coefficients R, are computed from 

the DFT in (29) with P (w ) replaced by P,(nw ).  For a nonzero n ^  i  o 

fundamental u , the resulting model spectrum P, U) will not be 

equal to P (to) for P^PQ» or any other value of p. This is 

illustrated in Fig. 7a where P«^) is the dashed curve, P.fw) is 
u 

the line spectrum with F = ^ ~  ^^-^ Hz, and P, (w) is the solid 

curve and represents the LP spectrum corresponding to P,(w) for 

p=p  (here p =14).  The discrepancy between P1(w) and P0(u)) in 

Fig. 7a is obvious.  A decrease in F brings P, (to) closer to P0(w) 

as in Fig. 7b.  In the limit as F approaches zero (UJ ->0} ,   P^ (w) 

approaches P0(w) and P,(u)) becomes identical to P0(a)), as we 

already know from the continuous frequency case. 

Figures 8 and 9 show other examples of modeling spectra of 

periodic signals.  The types of discrepancies that can occur be- 

tween the model and original spectra include merging or splitting 

of pole peaks, and increasing or decreasing of pole frequencies 

and bandwidths.  In general, the pole movements are in the direc- 

tion of the nearest harmonic.  Atal [11] has been making quantitative 

measurements of these discrepancies. 

It is important to note in Figs. 7-9 that the dashed curve 

in each case is the only possible p -pole spectrum that coincides 

with the line spectrum at the harmonics.  (In general this is 
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(A) 

>- 

I 
UJ 

w 
> 

e 

0 2        3        4 

FREQUENCY ( KHZ) 

(B) 

1       2       3       4       5 
FREQUENCY (KHZ) 

Fig. 7. LP modeling of harmonic spectra. 
Dashed curve: Filter 14-pole spectrum. 
Vertical lines: Corresponding harmonic spectrum for 

(A) F0=312 Hz, and (B) F0=156 Hz. 
Solid curve: A 14-pole fit to the discrete harmonic 

spectrum. 
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(A) 

(B) 

FREQUENCY ( KHZ) 

FREQUENCY ( KHZ) 

Fig. 8, LP modeling of harmonic spectra. (See Fig. 7) 
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II 

D 
a 
D 

(A) 

2        3        4 

FREQUEMCY ( KHZ) 

(B) 

2       3       4 

FREQUENCY ( KHZ) 

Fig. 9. LP modeling of harmonic spectra.  (See Fig. 7) 
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true only if the period t?2po samples.) It is unfortunate that 

the all-pole spectrum resulting from LP modeling does not yield 

the spectrum we desire. 

Another relevant spectrum is that of a single pitch period T; 

let that be Q(a)).  it is well known that Q((Jü) is an all-zero 

spectrum that coincides with P0 (w) onlj at the harmonics nu>0 

i.e. Q(nujo) = P1(nu)o) = P0 (no^).  However, since Q(u)) is otherwise 

not equal to P0(UJ), applying LP modeling to Q{ui)   with p=p0 will 

result in an LP spectrum Q(L>)   that is still different from the 

all-pole P0(w) and also different from the LP spectrum P, (CJ) 

corresponding to the discrete spectrum P1(OJ), i.e. Q(üJ) ?  ?,((*)) ? 

P0(u)). 

It would seem from the above that LP analysis of periodic 

signals (especially those with high fundamental) is doomed to 

be of a very approximate natuie.  Indeed, if nothing is known 

about the transfer function of the system, there is a basic loss 

of information in the spectrum of the periodic signal that is 

irrecoverable.  This is true whether one uses linear prediction 

or some other form of analysis.  However, the previous discussion 

shows that even when we are given the extra information that the 

system transfer function is all-pole, LP analysis does not seem 

to be able to recover that all-pole spectrum.  The reason, of 
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course, is that nowhere in the analysis did we actually use the 

fact that Po(w) is all-pole.  For example, in computing P^co) 

from the line spectrum P^w), we did not make use of the fact 

that P^nu^) = .P0(nu)o) and that PQ{L>)   is all-pole.  In fact, 

LP analysis does not allow us to use that information. 

All is not lost, however.  The trick is to use the fact 

that P^nu^) = P0(nuJo) to generate P^u.) for all u , and then 

to apply LP analysis to that, resulting in an LP spectrum iden- 

tical to P0(^).  In order to generate all of P (w) from P, (noj ) 
o i  o 

we use the important fact that the autocorrelation of an all- 

zero spectrum with po zeros is equal to zero for lags |k|>p . 

For example, from (26) we see that the autocorrelation b of 
k 

the all-zero inverse filter A(z) is zero for |k|>p. since P (w) 

is all-pole, its inverse P^1^) is all-zero. Let the autocorre- 

lation of P' (w) be rk.  Then rk=0 for |k|>p , 

P"1^) = 2°  rv e-J
kw 

0
      k=-P  

k (31) 

and 
1        P 

0   k=-p  k (32) 

But since Pjfnu^) ■ P0 (nw ) we must have 

-1 .-1 P, (nu ) = P  (nu> ) 
1     0      0     0 
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Therefore, Pi1«»»,,) - / rk,-i***o 
K«-p 

P 
Z 

k=-p 
o   _ 0-j2Trkn/T 

k 
1 r' e        ,  Osnft-l ,   (33) 

where t is the number of samples in a pitch period.  If we def ine 

fk = rk '  0-^[7] * 

and rT_k = ik   , 

then .-1 T-l 
1 tnujo) ~ z rk e '  0«n«T-l . 

k=0 

(34) 

(35) 

But (35) is a T-point DFT, whose inverse is given by 

>-j2TTkn/T 1 'C-1 -1 rk = - Jo P1 (n^) e ,  05k5T-l.    (36) 

Therefore, from (36), (34) and (31), one can reconstruct P (co) . 

This is done as follows: 

1. Compute the inverse of the line spectrum: 

P^ (nujo) = l/P1(ncüo), Osnu-r-l. 

2. Compute the inverse DFT of P~1(nü) ) usinq (36). 

With (34), this yields the autocorrelation function rk.)(37) 

3. Compute the all-zero spectrum P~1(üJ) from (31) for a 

large number of frequencies. 

4. Compute P (w) = 1/P~1(CJ). 
0 0 
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If the spectrum Q<«) of a single pitch period is given, then the 

first thing to do is to sample 0(0,) at the harmonics. This yields 

the line spectrum P^na^) . Then follow the procedure (37) above 

to compute *,(*).  Applying LP analysis to P0(a,) with p=po will 

then yield an LP spectrum equal to P (u). 

Above we have shown how to recover the complete all-pole 

spectrum given a finite number of equally spaced points on it. 

Taa only restriction is that the number of harmonics in the spec- 

trum be at least equal to the number of poles.  This can be thought 

of as a method of "smoothing" the discrete spectrum.  The smoothing 

is done by resorting to the autocorrelation of the inverse spec- 

trum.  Thus we might label this type of smoothing as inverse 

autocorrelation smoothing.  Because this method of smoothing is 

based on an all-pole assumption for the spectrum, its application 

to more general cases has anticipated problems.  As a simple 

example, let us assume that the given harmonic spectrum is all- 

pole but noisy (e.g. as a result of quantization).  This case 

has arisen in our experiments in speech compression [15] where 

selected spectral values are used as transmission parameters. 

We employ the procedure give,, in (37) above to recover the linear 

prediction coefficients.  Problems arise upon quantization of 

the spectral values to less than 5 bits.  The autocorrelation co- 

efficients as computed from (36) lose their positive definiteness 
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which results in a smoothed spectrum that is negative in certain 

regions.  This, in turn, results in an unstable linear predic- 

tion filter with some poles outside the unit circle.  There are 

ways to remedy these situations in a reasonable manner [15], 'jut 

the message is clear that one should anticipate such problems. 

The same problems arise if the original spectrum contains zeros 

as well as poles.  It should be emphasized, however, that these 

problems arise when the number of harmonics in the spectrum is 

small, i.e. on the order of the number of poles.  If the number 

of harmonics is at least twice the number of poles the problems 

are not likely to arise.  However, for those cases, regular LP 

analysis on the line spectrum produces satisfactory results, 

thus obviating the need to use the procedure in (37) . 
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VI.  LINEAR PREDICTION VS. ANALYSIS-BY-SYNTHESIS 

An important aspect of any fitting or matching procedure 

is the properties of the error measure that is employed, and 

whether those properties are commensurate with certain objectives 

In the spectral analysis of speech, a common objective is to have 

the model spectrum P(w) approximate the envelope of the signal 

power spectrum P(w).  m this section we shall explore in some 

detail the properties of the error measure used in LP analysis 

and then compare it to the error measure used in Abs, always 

using as our criterion of goodness the ability of each matching 

procedure to approximate the envelope of the signal spectrum. 

LP Error Measure 

• * 

One important consideration in estimating the spectral en- 

velope is the determination of an optimal value for p, the num- 

ber of poles in the model spectrum.  This topic has been dis- 

cussed elsewhere [8,9] and we shall not pursue it in this paper. 

However, assuming that somehow we know this optimal value of p, 

there remains the question of whether minimization of the error 

measure in (5) will result in a good estimate of the spectral 

envelope. 

u 

For each value of p, minimization of the error measure E 

in (5) leads to the minimum error Ep in (11).  it can be shown 
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[8J that E  is also equal to 

Ep = e-0 , 

where 
2v f  log P(ü)) du 

-IT 

(38) 

(39) 

is the zeroth coefficient (quefrency) of the cepstrum correspond- 

ing to P(w).  Ep can also be interpreted as the geometric mean 

of the model spectrum P(a)).  Ep decreases monotonically as p 

increases [8], and the minimum occurs as p->- , where P(CJ) be- 

comes identical bo P(u), and (38) reduces to 

Em;  = E  = e
uü , min   " ' (40) 

i 

where c0 is obtained by subsituting P(u) for P((ij) in (39).  If 

P(w) is a po-pole spectrum then Ep.Emin for all p>po.  The abso- 

lute minimum error is a function of P(co) only, and is equal to 

its geometric mean, which is always positive and usually non- 

zero for speech spectra.  This is a curious result, because it 

says that the minimum error can be nonzero even when the matching 

spectrum P(a)) is identical to the matched spectrum P(üJ). This 

unusual property is due to the fact that the error measure in 

(5) is defined as the average of the ratio of two quantities and 

not their difference as is usual with most error measures such 

as the mean squared error. 
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Let  the  ratio of  P(u))   to P(aj)   be given by 

E(W)   =  PHI     . 
P(w) 

Then from   (23)   we  have 

j^- f     E(u))da) 
-TT 

= 1 , for all p. 

(41) 

(42) 

. i 

T - 

E(u)) can be interpreted as the "instantaneous errcr" between 

P(w) and P(ü)) at frequency u.  Equation (42) says that the 

arithmetic mean of E(w) is equal to 1, which means that there 

are values of E(w) greater and less than 1 such that the average 

is equal to 1.  (Except for the special case when P(u)) is all- 

pole, the condition E(CJ)=1 for all u is true only as p— .) 

In terms of the two spectra, this means that P(w) will be greater 

than P(u)) in some regions and less in others such that (42) 

applies.  However, the contribution to the total error is more 

significant when P(UJ) is greater than P(tü) than when P(tj) is 

smaller, e.g. a ratio E(üJ)=2 ( + 3dB) contributes more to the total 

error than a ratio of 1/2 (-3dB).  We conclude that, after the 

minimization of error, we expect a better fit of P(ü)) to P(u)) 

where P(üJ) is greater than P(u)), than where P(a)) is smaller.  For 

example, if P(u) is the power spectrum of a quasi-periodic sig- 

nal (such as a sonorant), then most of the energy in P(w) will 

0 
la 
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exist in the harmonics, and very little energy will reside be- 

tween harmonics.  The error measure in (5) insures that the 

approximation of P(a)) to P(u)) is far superior at the harmonics 

where the energy is greater, than between the harmonics where 

there is veiy little energy.  Since P(to) is expected to be a 

smooth spectrum (this is insured by choosing an appropriate 

value of p), we conclude that minimization of the error measure 

in (5) results in a model spectrum P(w) that is a good estimate 

of the spectral envelope of the signal spectrum P(Oü).  It should 

be clear from the above that the importance of the goodness of 

the error measure is not as crucial when the variations of the 

signal spectrum from the spectral envelope ere  much less pro- 

nounced, such as spectra of unvoiced stops, spectra of single 

pitch periods, and ordinary filter-bank spectra. 

Another important property of this estimation procedure is 

that, because tne contributions to the total error are determined 

by the ratio of the two spectra, the matching process should 

perform uniformly over the frequency range of interest, irrespec- 

tive of the shaping of the speech spectral envelope. 

The error measure E is similar in its properties to an 

error measure used by Itakura and Saito [12,13] in their maxi- 

mum likelihood method which results in the same set of equations 

(10).  Their error measure is also "more sensitive to the 

U 
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n 

spectral peaks ^Hü less to the dips" [12].  They conclude that 

for the purposes of synthesis this is a good property because 

the ear is more sensitive to peaks than to dips in the spectrum. 

Itakura and Saito were not explicit in what they meant by spec- 

tral peaks and dips.  There are two likely interpretations: 

(1) The peaks correspond to harmonic peaks, and the dips are 

those between the harmonic peaks.  (2) The peaks correspond to 

formants and the dips are the valleys in between.  The second 

interpretation is the one Flanagan [14] gives in his review cf 

Itakura and Saito*s work.  Flanagan states that "the minimiza- 

tion results in a fit which is more sensitive at the spectral 

peaks than in the valleys between the formants" [14].  We be- 

lieve both interpretations to be correct, but undei. very differ- 

ent conditions.  It ail depends on the number of poles in the 

model spectrum.  If the number of poles is less than the neces- 

sary number to characterize all the formants in the spectrum 

then indeed the fit could be better at the formant peaks than 

in the valleys.  On the other hand, if the number of poles is 

greater than or equal to the minimum number of poles necessary 

to represent the spectral envelope as in Figs. 1 and 5a, then 

the fit in the valleys between the formants is just as good as 

the fit at the formant roaks.  In this case, the first interpre- 

tation given above is more appropriate.  Indeed, it is a funda- 

mental property of the error measure E in (5) that given any 

D 
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peaks and dips one wishes to define, one can always find a 

value for p, the number of poles, such that the fit is equally 

good at the peaks and dips.  In fact, we know from (22) above 

that as p~. , the model spectrum fits the signal spectrum 

exactly, all peaks and dip« included.  This, of course, is also 

true for all p>po if P(u)   is a P0-pole spectrum. 

It is clear from the above that the number of model spectrum 

poles plays a crucial role in determining how the model spectrum 

fits the sign>.l spectrum.  Since interpretations in terms of 

peaks and dips can be misleading if not stated carefully, we pre- 

fer to interpret the matching process by the relation of the 

values of the signal spectrum P{u) relative to those of the model 

spectrum P(«).  We merely state that, after error minimization, 

the fit will be better for values of P(«)>P(W) than for values 

of P(W)<P(ü»).  For spectral envelope estimation with an appro- 

priate number of poles, this guarantees us that harmonic peaks 

(P(w)>P(u))) are matched better than the dips in between 

(P(w)<#{w)), resulting in a good spectral envelope match. For 

purposes of synthesis, a better spectral envelope fit results 

in better synthesis, i.e. a better "perceptual fit". 

Comparison With AbS 

In AbS [3] the error measure that was normally used is given 

44 
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(in our notation) by: 

E' ■ J   E* (iü)dcü 
Ul 

(43) 

where EMw) = UogP(u))-logP(w) ] 

i2 
=  locj P(u) 

P(U))J (44) 

- [log E(UJ)] 

Here P(aj) is the model spectrum, E(u)) is the ratio of the two 

spectra as in (41), and the integration in (43) is over the 

frequency rango of interest.  Minimizing E" is equivalent to 

minimizing the mean squared error between the two log spectra. 

In contrast to the error measure E in LP, here a minimum error 

of zero is possible, namely when the two spectra are identi- 

cal. 

The error measures E and E' in (5) and (4 3) are similar in 

that the contributions to the total error are functions of 

the ratio of the two spectra.  We have already mentioned that 

this fact makes the matching process perform uniformly over the 

frequency range of interest,  however, the error measure E in 

LP spectral matching has two advantages over E':  (a) For an all- 

pole model spectrum, the minimization of E in (5) leads to 
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a solution where the coefficients of the resulting P(a)) are 

computed simply by solving a set of simultaneous linear equations, 

while the minimization of E' has to be done iteratively.  (b) For 

many cases of interest, F. is a superior error measure to E* if a 

spectral envelope is desired.  This is clear if one notes from 

(44) that contributions to the total error E' are made equally 

whether P(ü))>P(U)) or P(b»)<P(tt>i e.g. a ratio E(u))=2 (+3dB) con- 

tributes equally to the total error E' as a ratio of 1/2 (-3dB). 

This means that energy at the harmonics (in voicer". sounds) and 

the lack of energy between harmonics contribute equally to the 

total error.  This, of course, will not lead to a good spectral 

envelope.  One can dramatize the difference between the error 

measures E and E' by assuming that the signal spectrum P(ü))«Ü 

for some range of frequencies (no matter how small).  The ratio 

EU) will be zero for the same range, but E* (u) in (44) will be 

infinite.  The effect of this range of frequencies on the total 

error is nil for E and total for E*.  It is clear that for cases 

where the variations of the signal spectrum about the spectral 

envelope are large, E is a preferable measure of error to E'. 

But then, traditional AbS methods have generally used ax- 

ready smoothed spectra, in which case it is not exactly clear 

which error measure is to be preferred.  For the special case 

when the signal spectrum is all-pole we know that both LP and 
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AbS error minimization result in a model spectrum that is iden- 

tical to the signal spectrum. (A salient difference, though, is 

that the minimum error E' in AbS will be zero.)  For other smooth 

signal spectra there is independent evidence [15] that the AbS 

error measure might result in a better spectral fit.  However, 

for FFT-generated spectra (from a time signal) we believe that 

linear prediction will generally be superior to AbS. 

Comparison for Discrete Spectra 

Another point of comparison between LP and AbS is in the 

case of discrete spectra.  This case is of particular interest 

because AbS techniques were largely applied to filter bank 

spectra.  We shall consider only two types of spectra - harmo- 

nic spectra and filter bank spectra.  Both types of spectra will 

be considereu to be samples on a smooth spectral envelope. 

The definition of error for AbS is obtained by replacing the 

integral in (43) by a summation 

2 

(45) 
N-l 

E' =  2   log 
n=0 

P(V 
P(V. 

The comparison now is between E' in (45) and E in (28).  The 

absence of the factor G2/N in (45) is irrelevant to this di 

sion. 

scus- 
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An example which will put the issues into focus is that 

given in Section V, where the signal spectrum is an all-pole 

harmonic spectrum P^)   as defined by (30), i.e. the harmonics 

lie on a p^pole spectrum Po (w).  We have seen that Lp analysis 

will not result in the desired envelope spectrum Po(w,, as was 

illustrated in Figs. 7-9.  On the other hand, one can show that 

by minimizing E' in (45) with P (V = p^^,, the model Abs 

spectrum will he identical to Po(w) for p=po.  (The only possible 

restriction is that the number of harmonics be at least equ.1 

to the number of poles )  Thi c ic, ^i^  i poxes.;  This is clear by noting that the abso- 

lute minimum value thaL L« in (45) can have is ?ero, and this 

occurs only when the two spectra are equal at eacn frequency %. 

Since in tni« example we know that there is a unique all-pole " 

spectrum Po (.) that is equal to P1 (.) at each frequency u^, 

we conclude that the all-pole model spectrum ^ (W) „m r[M{lll 

in an error E'-O , and therefore must be identical to P0(u). 

The above example shows that for modeling of all-pole har- 

monic spectra, Abs is clearly superior to LP.  One could argue 

that for this special case of all-pole harmonic spectra, it is 

Possible to use "inverse autocorrelation smoothing" as described 

in Section V to recover the all-pole spectrum so that LP analysis 

will result in the desired spectrum.  However, as we pointed out 

earlier, this .ethod of smoothing i. sensitive to spectral noise 
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ani to the existence of zeros in the signal spectrum; its use 

is generally not recommended.  We dc not mean to imply in the 

above arguments that LP analysis should not be used at ail with 

harmonic spectra.  We merely point out that Abs gives better 

results, but at a much higher computational cost.  if the results 

shown in Figs. 7-9 .re satisfactory for the application one has 

in mind, then clearly LP analysis is to be preferred because of 

the lower cost.  If ^re accurate results are desired then one 

must pay the price inherent in AbS.  The same comments also apply 

to modeling of filter bank spectra. 

The reader might sense a contradiction between the above 

conclusions and those made earlier in this section, (i) Earlier 

we stated that, especially for the case of spectra of voiced 

sounds where the energy is mainly concentrated around the har- 

monics, such as in Fig. 5a, LP analysis is superior to AbS in 

that it results in a better spectral envelope fit.  (ii) On the 

other hand, we have shown above that for the case of harmonic 

spectra, such in Figs. 7-9, AbS is superior to LP.  The contra- 

diction is only apparent.  The two types of harmonic spectra 

mentioned above are radically different in the way they affect 

error minimizarion.  The signal spectrum in Fig. 5a makes large 

excursions from the spectral envelope,  while these excursions 

are of little importance in LP error minimization, they are 
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disastrous to AbS error minimization,  m contrast, in Figs. 7-9, 

only the values at the harmonics are included in the error, so 

that there are no large excursions to upset AbS error minimiza- 

tion.  It is not that LP does better in case U), e.g. Fig. 5a, 

it is that AbS does much worse.  In fact, LP performs about the 

same in cases (i) and (ii) .  The conclusions concerning LP analy- 

sis as depicted in Figs. 7-9 also apply to the case in Fig. 5a. 

The problem is that if one has to deal with case (i) then AbS 

does not perform well and there is little cnoice but to use LP 

analysis.  An interesting solution to this problem is to convert 

case (i) to case (ii) and then apply AbS instead of LP.  This 

can be done in Fig. 5a, for example, by "peak picking" the har- 

monics, i.e. retain the values only at the harmonic peaks and 

discard all other values, then apply AbS UD the resulting line 

spectrum.  That should give better results than straight LP, 

especially for high fundamentals.  Another possibility is to 

take the spectrum of a single pitch period, sample it at the har- 

monics and then use AbS.  The main obstacle, however, is the 

computational cost associated with AbS.  The attraction of LP 

modeling is its simplicity; the price that one pays is that the 

model spectrum can have only poles, and a degradation in perfor- 

mance is expected with an increase in pitch frequency. 
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VII.  ALL-ZERO MODELING 

We have seen in section II that if the model spectrum is 

all-pole then the minimization of the LP error in (5) leads to 

a set of linear equations (10) which can be easily solved for 

the parameters of the model.  It is straightforward to show that 

if the model spectrum contains zeros (with or without poles), then 

the minimization of (5) leads to a set of nonlinear equations 

whose solution is generally iterative and not always readily 

convergent.  Computation-wise then, LP analysis that includes 

zeros in the model offers no distinct advantages over AbS. 

However, if the model spectrum is all-zerc  then the prob- 

lem can be reformulated such that a suboptimal solution can be 

obtained noniteratively.  The idea is quite simple:  Invert the 

signal spectrum and apply an all-pole LP analysis, then invert 

the all-pole LP spectrum to obtain tne desired all-zero model. 

We shall call this process  inverse LP modeling .  This solution 

is clearly reasonable, and on the surface even seems to be opti- 

mal.  Unfortunately, there is a problem.  Below we discuss this 

problem and show now to deal with it. 

We state again that our purpose in spectral modeling is to 

obtain a good fit to the envelope of the signal spectrum.  The 

problem in the solution given above is that, in general, the 

envelope of the inverted spectrum is not equal to the inverse 
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envelope of the speccrum.  For example, if we invert the signal 

spectrum in Fig. 5a, then the harmonic peaks become valleys and 

the valleys between tne harmonics become the new peaks.  We 

know that LP analysis on this inverted spectrum will follow these 

new peaks whose envelope is not the one we are after.  This prob- 

lem is not so severe if the signal spectrum is smooth relative 

to the order of the model.  For example, if the signal spectrum 

consists of q zeros only, then the above method leads to the 

correct solution for p=q.  Therefore, the solution to our problem 

is to smooth the signal spectrum before we apply inverse LP analy- 

sis.  However, smoothing introduces a certain amount of error. 

Therefore, inverse LP modeling on the smoothed spectrum is only 

a suboptimal solution.  The type and degree of smoothing can 

effect the final result appreciably,  üelov; we discuss these 

matters briefly. 

The degree to which smoothing is performed must depend on 

the order of the model considered.  For example, a large amount 

of smoothing can be tolerated if the order of the model is small. 

In general, the simplest and perhaps most effective way to de- 

termine the degree of smoothing is by inspection of the results. 

There are several types or methods of spectral smoothing. 

One can apply a low pass filter to the spectrum (autocorrelation 

smoothing) or to tne log spectrum (cepstral smoothing). 
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Autocorrelation smoothing has been used extensively by statisti- 

cians.  Cepstral smoothing is a more recent development that 

has been employed in speech and picture processing.  Another 

method of smoothing that has become quite popular recently is 

LP smoothing.  Indeed, LP modeling can be thought of as just 

another method of smoothing the spectrum.  The degree of smoothing 

is controlled by the order of the predictor.  Usually, the order 

of the predictor p is chosen to be much larger than the number 

of zeros in the model q.  m this method, the whole procedure 

is as follows:  (a) Perform a regular p pole LP analysis on the 

signal spectrum, where p»q.  (b, compute the corresponding LP 

spectrum and invert it.  (c) Perform a q-pole LP analysis on the 

inverted spectrum.  The resulting predictor coefficients are the 

desired parameters of the all-zero model. 

We point out that in speech analysis all-zero modeling can 

be used to study the spectral characteristics of glottal pulses. 
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VIII.  CONCLUSIONS 

Linear predictive analysis was presented as a problem in 

spectral modeling in which the signal spectrum is modeled by 

an all-pole spectrum through the minimization of an error measure 

given by the integrated ratio of the signal and model spectra. 

The parameters of the all-pole model are obtained as the solu- 

tion of a set of linear equations.  The only values needed for 

the computation of all p parameters are the first p+l autocorre- 

lation coefficients which are computed from the signal spectrum 

by a simple Fourier transform. Alternatively, the autocorrela- 

tion coefficients can be computed from the time signal, if aval- 

lable. 

The spectral formulation leads to the method of selective 

li£ear Prediction where selected portions of a spectrum can be 

fitted by an all-poU spectrum.  This method allows for arbi- 

trary spectral shaping in tne frequency domain, thus obviating 

the need for any special time domain filtering.  m addition, 

different portions of a spectrum can be fitted by different num- 

bers of poles, a property that is useful in speech recognition 

applications.  The method is also applicable to linear predictive 

speech compression systems where different sampling rates can 

be simulated without the need for sharp fUtering or down sampling. 
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LP analysis has also been applied to the modeling of dis- 

crete speotra, such as harmonic and filter bank spectra.  It 

was shown that the modeling process has definite problems as 

the number of spectral lines decreases, i.e. as the fundamental 

frequency increases.  This has clear implications for the analy- 

sis of high-pitched voices, such as female and children speech. 

For the special case „hen the harmonic spectru* is a sampled 

all-pole spectru., „e „ere able to recover the all-pole spectrum 

by first applying inverse autocorrelation smoothing.  Ho„ever, 

this „ethod of smoothing „as not reco«ended as a general m .hod 

of dealing „ith the problems associated with high fundamentals. 

A detailed comparison „as given between LP modeling and 

analysis-by-synthesis <Ab£) in „hich the error measure is defined 

as the average of the sguare of the difference bet„een the sig- 

nal and model log spectra.  The t„o methods „ere seen to have 

t„o properties in common:  ,a, The spectral matching can be done 

selectively to any portion of the spectrum, and (b) both error 

criteria are functions of the ratio of the original and model 

spectra, „hich results in a matching process that performs 

uniformly over the freguency range of interest.  Por the special 

case of an all-pole moael, bP analysis „as seen to offer t„o 

important advantages:  (a) The computations for the spectral 

parameters are straightfor„ard and noniterative, and (b) if the 
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time signal is available there is uo need to compute the spectrum 

first.  However, the major difference between LP and AbS modeling 

is in the quality of match between the model and signal spectra. 

If the variations of the signal spectrum about the model spectrum 

are large, then LP analysis is preferable to AbS.  This is usually 

the case if the signal spectrum is FFT-derived from a time sig- 

nal.  However, if the signal spectrum is smooth relative to tt* 

model spectrum, then AbS is expected to give better results than 

LP analysis.  This occurs with filter bank spectra and cepstrally 

(or otherwise) smoothed spectra. 

Finally, we gave a suboptimal solution to the problem of 

all-zero modeling using LP analysis.  The solution is simply to 

apply all-pole LP modeling to the inverted spectrum.  This, how- 

ever, requires that the spectrum be smoothed before inversion. 
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